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Abstract
The injection current of an external-cavity semiconductor laser working in a regime of
low-frequency fluctuations (LFFs) is modulated at several MHz. The rate of power dropouts in
the laser emission is correlated with the amplitude and frequency of the modulating signal.
The occurrence of dropouts becomes more regular when the laser is driven at 7 MHz, which is
close to the dominant frequency of dropouts in the solitary laser. Driving the laser at 10 MHz
also induces dropouts with a periodicity of 0.1µs, resulting in LFFs with two dominant
frequencies.

PACS numbers: 42.55.Px, 42.60.Fc, 42.60.Rn

1. Introduction

Semiconductor lasers with optical feedback are a category
of nonlinear systems that exhibit a variety of chaotic
dynamics. Their interesting behavior is mainly related to the
simultaneous existence of two different temporal scales: a
relatively slow regime of large power fluctuations also called
low-frequency fluctuations (LFFs) in the range of a few
MHz when the laser emission drops to almost zero and fast
oscillations on a scale of about 1 GHz as the output power is
restored back to its initial level [1]. The chaotic oscillations
arise when the laser is subjected to optical feedback obtained
from a reflector placed in the optical path of the laser beam [2].
Coupling of two identical chaotic lasers can result in total
synchronization of their nonlinear output and has shown great
promise in achieving secure communications encoded with
chaos between these types of optical systems [3]. A topic of
great interest is the entrainment of the chaotic oscillations in
laser diodes (LDs) [4], which can be achieved by modulating
the driving current of the diode [5–7] at low frequency.
Modulation of the injection current at high frequency resulted
in LFFs synchronized with the driving signal [8].

In this work, the LFFs of an LD with optical feedback
are experimentally studied when the injection current is
modulated at frequencies close to the mean frequency of
power dropouts. The synchronization state between the

laser and the external modulator is studied by finding the
statistics of power dropouts in the laser emission. The study
uses Shannon’s entropy on evaluating the distribution of
time intervals between consecutive reductions in the laser
intensity [9–11]. In addition, the synchronization between the
laser and the modulator is investigated by introducing two new
variables, the phase of the laser’s LFFs and the phase of the
driving signal [12]. The ratio of these two phases is estimated
during the evolution in time of the chaotic laser [13].

The behavior of the synchronized chaotic diode laser
with an external modulator is qualitatively similar to
deterministic coherence resonance observed when one of the
system’s parameter such as the injection current is slightly
modified [14] or when the state of pure coherence resonance,
when noise is added, leads to more regular spikes in the laser
emission [11]. In this paper, no noise is added into the system.

2. Experimental setup

The solitary laser with optical feedback has dropouts spaced
randomly in time, between 0.01 and 0.9µs. Modulating the
laser at 7 MHz that corresponds to a period of 0.1428µs
induces power dropouts mainly with this periodicity, even
at relatively small amplitudes of the modulating signal.
A driving frequency of 10 MHz alters the laser dynamics
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Figure 1. Setup of the LD driven by a periodic signal generator.
PD, BS, NDF, M and TC stand for the photodiode, beam-splitter,
neutral density filter, mirror and temperature controller, respectively.

by generating power dropouts with an average period of
0.1µs, besides the intrinsic dropouts of the solitary laser.
Although the applied periodic signal is frequency resonant
with the intrinsic laser dropouts, an increase in its amplitude
does not necessarily lead to perfect phase synchronization
between the laser and the modulator, as was observed in a CO2

laser [12, 15]. In [12], the random spikes in the laser emission
exhibiting homoclinic chaos, with a repetition rate of a few
kHz, were controlled by periodic electro-optic modulation of
the cavity losses.

A single-mode Mitsubishi LD emitting at 663 nm
and rated 40 mW at 100 mA was operated near the
injection current threshold (Ith = 54 mA) in an external cavity
configuration, as shown in figure 1 [16]. The optical feedback
was obtained from a mirror placed at 30 cm distance from
the LD. The feedback could be adjusted by rotating a
Thorlabs neutral density filter with variable transmittance.
The level of feedback was adjusted until well-delimited
intensity fluctuations were obtained in the laser emission at an
injection current I = 55 mA. The temperature of the junction
was kept constant at 24 ◦C. The diode laser was driven by
a radio-frequency (rf) sinusoidal wave delivered by a WW
5061 Tabor Electronics waveform generator. The rf signal
was added to the injection current of the laser driver using
a ZFBT-6GW bias-tee with low insertion loses (0.16 dB at
10 MHz).

An ET-2030A photodetector with a rise time <500 ps
converted the instabilities in the laser emission into electrical
impulses. A Tektronix DPO7254 digital scope with a
bandwidth of 2.5 GHz was used to acquire simultaneously
the fluctuations in the laser intensity and the periodic signal
coming from the wave generator. The sampling interval was
2 × 10−10 s. Time series of 5 × 105 points were recorded for
dropout statistics.

The injection current of the diode laser was composed
of the dc pump current and the rf component delivered by
the modulator: I (t)= Idc + Im cos(ωmt), where ωm = 2π fm

is the frequency of the modulator. The modulation factor
is m = Im/Idc. In figure 2, fm = 7 MHz was kept constant
and m was increased from 5 × 10−3 in panel (a) to 3.4 ×

10−2 and 5.7 × 10−2 in panels (b) and (c), respectively. In
figure 2(a), the modulating signal produces little change in
the times series of the laser emission. When the amplitude
of the modulating signal was increased the dropouts were
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Figure 2. Modulation at 7 MHz: laser intensity in (a)–(c) and
statistics of dropouts in (d)–(f) for m = 5 × 10−3, 3.4 × 10−2 and
5.7 × 10−2, respectively.

I 
(a

.u
.) (a)

0

0.05

0.1

I 
(a

.u
.) (b)

0

0.05

0.1

I 
(a

.u
.)

(µs)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

(µs)

Pr
ob

ab
ili

ty

(d)

0 0.1 0.2 0.3
0

0.1

0.2

0.3

(µs)

(e)

0 0.1 0.2 0.3
(µs)

(f)

0 0.1 0.2 0.3

Figure 3. Modulation at 10 MHz: laser intensity in (a)–(c) and
statistics of dropouts in (d)–(f) for m = 5 × 10−3, 3.5 × 10−2 and
5.8 × 10−2, respectively.

more regular in time and seemed to follow more closely
the driving signal, as shown in figures 2(b) and (c). At the
same time, at larger amplitudes the driving rf signal was
apparently strong enough to determine a modulation of the
laser output, up to 50% of the average level, in figure 2(c). At
10 MHz, the modulation in the laser intensity became more
evident as m was increased from 5 × 10−3 in figure 3(a) to
3.5 × 10−2 and 5.8 × 10−2 in figures 3(b) and (c), respectively.
The histograms in figures 2 and 3(d)–(f) correspond to the
signals of figures 2 and 3(a)–(c), respectively.
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3. Statistical analysis of driven power dropouts

Initially a powerful tool for assessing the outcome of a
random variable in information theory, the application of
Shannon’s entropy has been extended to quantify statistical
complexity in chaotic systems, including lasers [12, 17, 18].
In order to better evidence the effect of the modulator on
the repetition rate of laser dropouts, the time intervals δt j

between consecutive dropouts are represented on a histogram
with a number of M bins, each with width d. A probability
is associated with each bin filled with Ni time intervals
out of a total number N : pi = Ni/N . The entropy of the
assembly is S = −

∑M
i=1 pi log pi [18]. When all N events are

uniformly distributed in the histogram, i.e. each bin contains
the same number of elements, S becomes Smax. For all other
distributions S < Smax, with the particular case when all N
elements are grouped in a single bin and S = 0. A coefficient
σ = (Smax − S)/Smax is introduced for a particular distribution
S to characterize the clustering or spreading of the elements
represented in the histogram.

A typical recorded data file contains N ≈ 565 dropouts,
while the width of a bin is d = 0.05µs. Figure 2(d) shows
relatively equally spread time intervals between 0.11 and
0.22µs, meaning that these time intervals will appear with the
same probability, suggesting a natural tendency of the laser
to relax at a preferred rate [19]. In this case σ = 0.287. A
weighted mean of these time intervals produces 0.155µs or
6.45 MHz, which is close to the chosen modulation value of
7 MHz. At a larger modulation factor a pronounced clustering
of these intervals about the peak at 0.15µs is shown in
figure 2(e), for which σ = 0.294. This is an indication that
the higher the amplitude of the driving signal, the larger
the number of induced dropouts at this particular rate of
0.1428µs. For the largest m, the envelope of the distribution
intervals is even narrower about the peak value as shown
in figure 2(f), and σ = 0.339. The situation is somewhat
similar at 10 MHz and for low m, when a relatively flat
distribution is obtained, as can be seen in figure 3(d).
However, when m is increased the time intervals cluster about
0.1µs, and two distinct peaks in the distribution are seen in
figure 3(e). As m is further increased the dropouts at 0.1µs
become predominant, as shown in figure 3(f). In this case, σ
characterizes the clustering of LFFs’ time intervals rather in a
bimodal distribution: σ = 0.308, 0.375 and 0.472 for the cases
of figures 3(d)–(f), respectively.

4. Phase evolution of cyclic signals

A numerical solution to the Lang–Kobayshi system of
equations [2] describing the dynamics of the external-cavity
laser shows the trajectory in the phase-space drifting past
the cavity modes toward the maximum gain mode [20].
Occasionally the attractor collides with an unstable antimode
and a crisis follows, manifested by an itinerancy of the
trajectory toward the threshold level of the charge carrier.
Exploiting this feature of the laser attractor, and in analogy
with simple chaotic flows such as the Rössler [21], the phase
8L(t) of LFFs is introduced as a variable that increases
in time with 2π for each dropout in the laser emission.
In other words, for a 2π cycle the trajectory crosses the
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Figure 4. Evolution in time of r =8m/8L for driving frequencies
of 7 MHz in (a) and 10 MHz in (b). The curves (–·–), (- - -) and (—)
correspond to the modulation cases of figures 2 and 3, with
increasing values of m.

Poincaré section in the laser attractor. If the moments of laser
emission fall-out are denoted by t1, t2, . . ., the LFFs’ phase
at a time t j 6 t 6 t j+1 with j = 1, 2, . . . , is 8L(t)= 2π(t −

t j )/(t j+1 − t j )+ 2π( j − 1). 8L is defined as a piece-wise
monotonically increasing function with a slope 2π/(t j+1 − t j )

for each time interval 1t j . The moment t1 is chosen as the
reference time and corresponds to the first dropout in
the acquired data file. We further introduce the phase of
the modulator based on the representation of the analytic
signal and the Hilbert transform. The analytic signal is the
complex function defined as ψ = sm(t)+ iŝm(t)= A(t)ei8m(t),
where sm(t)= Im cos(ωmt) is the modulating signal. In our
particular case of periodic modulation the phase 8m satisfies
d8m/dt = ωm and is unwrapped on the real axis. This means
that for each modulator cycle, 8m increases with 2π . We
define the correlation ratio between the modulator and the
laser as r(t)=8m(t)/8L(t). For r = 1 the laser and the driver
run in phase. Occasional phase slips in time between the two
phase variables can occur and r becomes rational. When the
time between two consecutive dropouts is significantly longer
than the period of the modulating signal, dr/dt > 0 and r
becomes larger than 1. In this case, the laser lags behind the
modulator. On the other hand, when the laser power falls at a
faster pace dr/dt < 0, and the modulator lags behind the laser.
In this case, r falls below 1. A phase correlation of the type
r(t)≈ k/ l at all times, where k and l are integers, is more
probable rather than a 1 : 1 synchronization in phase of the
two systems [18].

We applied the above procedure to our driven laser, for
the modulating frequencies of 7 and 10 MHz. In the first case
shown in figure 4(a), r ≈ 1.23 and 1.17 for the modulation
factors m = 5 × 10−3 and m = 3.4 × 10−2, respectively. It
becomes clear that as m is increased, the laser is forced
to follow up closely with the driver and rare phase slips
occur. At m = 5.7 × 10−2, the correlation approaches the 1 : 1
synchronization: r = 1.05. In all cases r settles to a constant
value after a transient time where phase slips are observed. At
10 MHz and m = 5 × 10−3 the modulator phase is ahead of
the laser phase as expected and r = 1.93. As m is increased
to 3.5 × 10−2 and 5.8 × 10−2, r passes through 1.5 from 1.59
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to 1.37, respectively. r = 1.5 means that on average three
complete cycles of the modulator correspond to two dropouts
in the laser power. For r < 1.5, more dropouts are induced at
the modulator frequency, as shown in figure 3(f).

5. Conclusions

The LFFs of an external-cavity semiconductor diode laser
were driven by a periodic modulation of the injection
current and became more regular when the frequency of the
modulating signal was very close to the rate of intrinsic
LFFs in the solitary laser. Moreover, power dropouts at
a slightly higher rate could be induced by increasing the
frequency of the modulating signal by about 40%, leading to
the observation of LFFs with two dominant frequencies. The
power dropouts were statistically analyzed using Shannon’s
entropy and a ratio between two phase variables that vary
cyclically in time, of the modulator and of the LFFs.
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